(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(a, x), a) → f(a, f(f(x, f(a, a)), a))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(a, f(f(z0, f(a, a)), a))
Tuples:
F(f(a, z0), a) → c(F(a, f(f(z0, f(a, a)), a)), F(f(z0, f(a, a)), a), F(z0, f(a, a)), F(a, a))
S tuples:
F(f(a, z0), a) → c(F(a, f(f(z0, f(a, a)), a)), F(f(z0, f(a, a)), a), F(z0, f(a, a)), F(a, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
z0),
a) →
c(
F(
a,
f(
f(
z0,
f(
a,
a)),
a)),
F(
f(
z0,
f(
a,
a)),
a),
F(
z0,
f(
a,
a)),
F(
a,
a)) by
F(f(a, a), a) → c(F(a, f(a, f(f(f(a, a), f(a, a)), a))), F(f(a, f(a, a)), a), F(a, f(a, a)), F(a, a))
F(f(a, x0), a) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(a, f(f(z0, f(a, a)), a))
Tuples:
F(f(a, a), a) → c(F(a, f(a, f(f(f(a, a), f(a, a)), a))), F(f(a, f(a, a)), a), F(a, f(a, a)), F(a, a))
F(f(a, x0), a) → c
S tuples:
F(f(a, a), a) → c(F(a, f(a, f(f(f(a, a), f(a, a)), a))), F(f(a, f(a, a)), a), F(a, f(a, a)), F(a, a))
F(f(a, x0), a) → c
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
F(f(a, x0), a) → c
F(f(a, a), a) → c(F(a, f(a, f(f(f(a, a), f(a, a)), a))), F(f(a, f(a, a)), a), F(a, f(a, a)), F(a, a))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(a, f(f(z0, f(a, a)), a))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:none
Compound Symbols:none
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))